Как правило, в электрических сетях напряжение должно находиться в пределах, определенных техническими нормативами, но иногда оно может и отклоняться от допустимых параметров. Предельно допустимое напряжение должно находиться в пределах ±10% от номинальных параметров напряжения, таким образом для однофазной сети в оно будет равно от 198 до 242 В, а для трехфазной сети от 342 до 418 В. И любые отклонения от данных значений будут называться перенапряжениями.
Приветствуется договоренность на конкретный день и время, реальные проститутки Владимир, каждому удовольствие на feivladimira.ru. Теперь знайте где же найти проститутку для сегодняшнего секс марафона. Очаровательные реальные проститутки Владимир, желанные и восхитительные, они такие игривые и стройные, что интимный досуг тебе обеспечен. Не упусти свой шанс.
Чем опасны перенапряжения и с чем связаны?
Перенапряжения имеют разную природу и от этого различаются длительностью и величиной. Обычно длительные перенапряжения возникают из-за какой-либо поломки понижающего трансформатора на подстанции или обрыва нулевого провода в сети.
Данные перенапряжения обладают сравнительно небольшими показателями, но действуют достаточно долгое время и представляют реальную угрозу для человека, и для вашего оборудования.
Долгое повышение напряжения может случиться из-за неравномерного распределения нагрузок по всем фазам во внешней сети. Именно тогда возникнет перекос фаз, при котором напряжение на загруженной фазе будет ниже, а на незагруженной естественно выше номинального.
Краткие по времени всплески напряжения могут появиться из-за переключений в энергосети или во время включения достаточно сильных реактивных нагрузок.
Сильные импульсные перенапряжения возникают в результате воздействия грозовых разрядов.
И напряжение может достигнуть десятков киловольт. Данные импульсы длятся в течение сотни микросекунд, и специальные защитные автоматы просто не успевают на них среагировать, потому что самые современные виды автоматов имеют время срабатывания единицы миллисекунд, и это может быть причиной выхода из строя и повреждения изоляции между фазой и нейтралью.
Хотя, это не приведет к короткому замыканию и не нарушит работу сети, но приведет к небольшой утечке тока в месте повреждения изоляции. И если будет проходить между фазой и нейтралью, то не будет фиксироваться и автоматами защиты, и это приведет к повышенному нагреву изоляции и ускоренному процессу ее старения. По истечении времени сопротивление изоляции на данном участке значения уменьшается, и ток утечки возрастет.
Последствия перенапряжения в частном доме
Возможность применения разных УЗИП для выполнения определенных защитных функций характеризуется по техническим показателям, отраженным в маркировке конкретного прибора.
- Показатель уровня напряжения защиты U — это важный параметр, характеризующий устройство защиты от импульсных перенапряжений.
Он точно определяет параметр остаточного напряжения, которое появляется на выводах УЗИП после прохождения разрядного тока.
- Максимальный разрядный ток – это величина импульса тока, которое УЗИП выдерживает однократно, с сохранением своей работоспособности.
- Номинальный разрядный ток – это величина импульса тока, которое УЗИП выдерживает многократно при условии, что он будет остывать до комнатной температуры в промежутке между электрическими импульсами.
- Максимальное длительное рабочее напряжение — это значение напряжения переменного либо постоянного тока, длительно подаваемое на выводы УЗИП. Оно будет равно номинальному напряжению при учете возможного завышения напряжения при разных нештатных режимах работы всей сети.
Постоянный ток, который подается к нагрузке, защищенной УЗИП. Этот параметр важен для УЗИП, включаемых в сеть последовательно с защищенным оборудованием.
Большое количество устройств защиты от импульсных перенапряжений подключаются параллельно цепи, и этот параметр у них, как правило, не отмечается.
Для более надежной и качественной защиты домашней электрической проводки от перенапряжений нужно создать многоуровневую систему защиты из УЗИП разных классов. УЗИП 1 класса рассчитано на ток 60 кА, УЗИП 2 класса на ток 40 кА.
УЗИП 3 класса на ток 10 кА.
Варисторы — это резисторы полупроводниковые, и при их работе применяется эффект снижения сопротивления полупроводникового материала при повышении приложенного напряжения, благодаря этому они являются более эффективными устройствами импульсной защиты.
Варистор нужно включать параллельно защищаемому оборудованию и при нормальной работе он будет находиться непосредственно под действием рабочего напряжения защищаемого механизма. При рабочем режиме ток, проходящий через варистор очень мал, и он в данных условиях представляет собой изолятор.
В соответствии с системой защиты производится выбор УЗИП. Обязательно учитываются все технические показатели устройств, которые указаны в каталоге и нанесены на лицевую часть корпуса прибора.
Прибор УЭ-18/380 предназначен для защиты электрической сети от кратковременных перенапряжений, вызванных грозовыми процессами.
Данное устройство обеспечивает защиту и относится к УЗИП 3-го класса и выполнено на варисторах. Для качественной защиты от длительных перенапряжений, связанных с авариями в электрической сети, прибор необходимо подключать после УЗО и заземлять.
Именно при таком подключении будет создаваться ток утечки, и обеспечиваться срабатывание УЗО.
При установке и монтаже УЗИП нужно, чтобы расстояние между ступенями защиты было не меньше 10 м по кабелю электрического питания.
От защищаемой зоны все ограничители перенапряжений можно разделить на классы или виды. Приборы 1 типа защищают объекты от внешних атмосферных и коммутационных перенапряжений, проходящих через разрядники класса А внешних электрических сетей. Как правило, они монтируются на вводном устройстве жилого дома и ограничивают величину перенапряжений до 4,0 кВ, сопутствуют защите вводных счетчиков и электрического оборудования распределительного щита.
Специальное устройство импульсной защиты необходимо для предотвращения всевозможных повреждений домашней бытовой техники от сильных импульсных перенапряжений, которые вызваны различными авариями в питающей сети либо грозовыми разрядами. Данные устройства называются также ограничителями перенапряжений (ОП). Обычно они выполнены на базе разрядников либо варисторов и имеют специальные индикаторные устройства, которые сигнализируют о их поломке. УЗИП на базе варисторов производятся со специальным креплением на DIN-рейку.